
EC ENGR C147 Project Writeup

Jack He Yuheng Ding Allen Wang James Jin
{jackhe313, yhding, allenwang2333, kaichenj7012}@ucla.edu

Abstract

In this project, we explored a variety of model archi-
tectures for EEG signal analysis, including CNN, RNN,
attention-based models, Transformers, and hybrid mod-
els.We carried out four sets of experiments to evaluate the
impact of various hyperparameters on a train-on-all and
test-on-all setting as well as on a train-on-single and test-
on-single setting, the influence of selecting different number
of time bins for the EEG signals, and the effect of data aug-
mentation on model performance. Our findings show that a
CNN specifically designed for EEG outperforms other mod-
els across all experiments while hybrid architectures exhibit
diminished performance. We also observed that the mod-
els achieve optimal results when just more than half of the
available time bins were selected. In contrast to our initial
expectation, data augmentation did not seem to enhance the
models’ performance in processing EEG signals.

1. Introduction
To resolve the complex patterns of neural activities us-

ing the EEG dataset, we have implemented multiple mod-
els with different architectures, including CNN, RNN, and
other post-CNN models, to better learn the spatial-temporal
dynamics of the brain signals. However, the motivations
behind each architecture vary. The CNN model is chosen
to better extract the spatial features of the data while the
RNN model and the LSTM units further capture the tempo-
ral relationship among the data. Moreover, attention-based
models emphasize the most significant parts of the model
while Transformer-based models excel at recognizing pat-
terns over long distances in the data. In an attempt to com-
bine some of the stated benefits together, we have also im-
plemented some hybrid models like CNN + RNN, CNN +
Transformer, and others. The specific results about each
model’s performance is given in the Results section.

2. Data Preprocessing
When loading the data from pre-saved files, we first load

the trainval and testing datasets along with each of their la-
bels. Next, we execute a random split, utilizing a custom

ratio of 0.8, to segregate the loaded data into distinct train-
ing and validation sets. If a specific subject or person is se-
lected, then the data is filtered to include only those related
to that particular subject. Otherwise, if the subject argument
is set to -1, then all subjects’ data is selected. Next, we ad-
justed the labels by subtracting them by 769 to ensure that
they start at 0. To conform to the expected input shape for
CNN-related models, we add an extra dimension of chan-
nels to the data. If specified, data augmentation is applied;
the details of these augmentation techniques are provided in
the Appendix. Moreover, their effectiveness will be tested
in one of our experiments.

3. Results
For this project, we have tested the following eight

models: a simplified ResNet architecture (MiniResNet), a
CNN model designed specifically for EEG signal process-
ing (EEGNet [1]), a general RNN model, a general CNN +
RNN model, an EEGNet + RNN model, an EEGNet + At-
tention model, an EEGNet + Multi-head Attention model,
and a general CNN + Transformer model. For more spe-
cific structure of each model, please refer to the Appendix.

We have implemented four experiments in total: 1) train
on all subjects and test on all subjects; 2) train on a single
subject and test on a single subject; 3) accuracy as a func-
tion of time; 4) effect of data augmentation. For optimizer
details, please also refer to the Appendix. Training hyper-
parameters such as batch size remain consistent for each
involved model across all experiments.

3.1. Experiment 1: Train on All, Test on All

For the first experiment, we have searched for eight sets
of training hyperparameters (each set includes number of
epochs, batch size, step size and gamma for learning rate
scheduling) that provide the most decent accuracy for each
model respectively when trained on all 9 subjects of the
dataset and tested on all 9 subjects. The accuracy overview
for the eight models are given in Table 1 under the Ap-
pendix. As one can see, EEGNet has achieved the highest
test accuracy of 0.7133 across all eight models, followed
by the hybrid models involving EEGNet. In other words,
the hybridization does not boost the performance beyond



the single EEGNet structure. What comes next is the gen-
eral CNN + RNN structure, obtaining a test accuracy of
0.4266, which is in the middle range of all the obtained
test accuracy and shows a noticable increase from both the
standalone CNN (MiniResNet) and RNN model. Also, it is
worth mentioning that the hybrid of CNN and Transformer
model yields a poor accuracy.

3.2. Experiment 2: Train on Each, Test on Each

For the next experiment, we tested four models in partic-
ular since they obtain the highest accuracy in the previous
experiment: EEGNet, EEGLSTMNet, EEGAttentionNet,
and EEGMultiAttentionNet. The first part of this experi-
ment involves training the models on each of the nine sub-
jects and testing them on the corresponding subject. For in-
stance, each model is trained on subject 0 and then tested on
subject 0 for evaluation, etc. The results are shown in Figure
1 under the Appendix. Similarly, one could easily observe
that EEGNet has the best performance across almost all tri-
als. However, the remaining models’ performance ranking
varies according to the subject. The difference in accuracy
between EEGNet and the rest models is the most apparent
on subject 1 and subject 4. Moreover, another interesting
trend is that all four models perform relatively poorly on
subject 1 and subject 5.

The second half of this experiment involves two testings
1) train on all subjects but test on subject 0, and 2) train on
subject 0 but test on all subjects. The results are also shown
in Figure 1. When trained on all, and tested on subject 0, al-
most all four models perform better than their own counter-
part of training on subject 0 and testing on 0. When trained
only on subject 0 and tested on all subjects, all four models
perform poorly, but their accuracy hierarchy still persists.

3.3. Experiment 3: Accuracy VS Time Bins

In this experiment, we evaluated three models’ accuracy
with respect to how many time bins are sampled for both
training and testing. Instead of evaluating EEGAttention-
Net and EEGMultiAttentionNet separately, we have chosen
to only test on EEGMultiAttentionNet, in addition to EEG-
Net and EEGLSTMNet. The default time bins selected for
all models across all experiments are 600. To observe how
the number of time bins selected affects the model’s per-
formance, we ran 5 sets of tests with 200, 400, 600, 800,
and 1000 time bins selected respectively with a train-on-
all and test-on-all setting. The results are shown in Fig-
ure 2 under the Appendix. Interestingly, the trend shown in
the figure is quite obvious. EEGNet almost always outper-
forms EEGLSTMNet, which in turn, always outperforms
EEGMultiAttentionNet. In addition, there is a parabolic-
like relationship between the models’ performance and the
time bins selected. All three models’ accuracy increases
first as the number of time bins increases from 200 to 600.

At 600 time bins, both EEGNet and EEGLSTMNet reach
their own maximum accuracy while EEGMultiAttention-
Net’s accuracy continues to rise until it peaks at 800 time
bins. Beyond these peaks, the accuracy of all models de-
clines as the number of time bins further increases to 1000.

3.4. Experiment 4: Effect of Data Augmentation

For the last experiment, we incorporated two types of
data augmentation into our training process: Gaussian noise
and channel drop. The details of each technique can be
found in the Appendix. Again, three models are tested here:
EEGNet, EEGLSTMNet, and EEGMultiAttentionNet. The
accuracy comparisons are displayed in Figure 3 under the
Appendix. This plot also demonstrates some interesting
trends. Similarly, EEGNet consistently performs better than
EEGLSTMNet, which in turn, always has higher accuracy
than EEGMultiAttentionNet. Nonetheless, applying these
data augmentation techniques does not boost the models’
accuracy. When applied independently, both Gaussian noise
and channel drop reduces the models’ performance on a
train-on-all and test-on-all setting with the latter method
lowering the accuracy more heavily. Moreover, while us-
ing both methods together still results in lower accuracy for
all models compared to training without data augmentation,
their performance shows an improvement compared to us-
ing just one of these methods.

4. Discussion
4.1. Accuracy Across All Subjects in Experiment 1

Through our first experiment (results shown in Ap-
pendix: Table 1), we found out that EEGNet and its
derivatives outperform all other CNN, RNN, hybrid, and
attention-based models. Adding extra layers, such as LSTM
and attention after EEGNet does not show signs of accuracy
improvement. We hypothesize the superior performance of
EEGNet due to the following reasons.

4.1.1 Domain Specific Architecture

EEGNet is a special convolution architecture that is de-
signed for EEG data classification. It is a compact model
that effectively combines temporal and spatial information
through convolution layers. Adding LSTM or Attention
modules after the convolution layers does not help may
partly due to the reason of redundant spatial data represen-
tation in the architecture.

4.1.2 Overfitting Resistance

EEGNet utilizes a simple architecture, which means the
number of parameters is relatively small. Compared to
other architecture that has significantly more parameters
and considering the limited number of data in the dataset,



EEGNet is resistant to overfitting during training. It is better
at capturing the true relationship of data distribution instead
of memorizing them.

4.2. Accuracy Among Subjects in Experiment 2

Experiment 2 (results shown in Appendix: Figure 1) pro-
vides a clear indication of each tested model’s ability to de-
code EEG signals, with significant variability in accuracy
among subjects. We thereby propose the following reasons
to explain the overarching trend.

4.2.1 Poor Performance on Specific Subjects

All models perform poorly on subjects 1 and 5, indicating
that there may be subject-specific factors that are not being
captured by any of the models. These factors could include
noise in the data, or inherent variability in the EEG signals.

4.2.2 Cross-Subject Generalization

In the second half of the experiment, training on all sub-
jects but testing on subject 0 yields better performance than
training and testing on subject 0 alone. This suggests that
incorporating a diverse set of training data can improve the
robustness of the model for individual predictions. In con-
trast, training only on subject 0 and testing on all subjects
results in poor performance across all models, emphasiz-
ing the difficulty of generalizing a model trained on a single
subject’s data to a broader population.

Despite the decrease in performance when generalizing
from training on a single subject to testing on all, the rel-
ative accuracy ranking of the models remains consistent.
This persistent hierarchy suggests that the core characteris-
tics that lead to a model’s success or failure are fundamental
to the model and not solely dependent on the training set’s
diversity.

4.3. Accuracy Across Time Bins in Experiment 3

Experiment 3 (results shown in Appendix: Figure 2)
aims to compare the accuracy of three different neural net-
work models in processing EEG data as the number of time
bins used for training and testing varies. We propose the
following hypotheses to interpret the observed trends.

4.3.1 Poor Performance on Short and Long Time Bins

The performance declined when time bins were either too
large or too small. A 200 time bin resulted in insufficient
data for the models to accurately distinguish between cate-
gories, likely due to lost of critical information. Conversely,
at 1000 time bin, performance worsened, suggesting that
excessive time bin expansion may impair predictive ability,
potentially due to overfitting or increased noise.

4.3.2 Optimal Time bins

The superior performance at 600 time bins for both EEGNet
and EEGLSTMNet, and at 800 for the EEGMultiAttention-
Net, likely stems from an optimal balance that involves suf-
ficient temporal data to capture the critical patterns within
the EEG signals, making the computation more efficient to
avoid overfitting.

4.4. Data Augmentation Accuracy in Experiment 4

The results of Experiment 4 (shown in Appendix: Fig-
ure 3) suggest that while data augmentation is a powerful
tool in many domains to improve model generalizability, its
effectiveness varies. They may hinder model performance,
possibly due to the delicate nature of EEG signals and the
critical importance of maintaining the integrity of the origi-
nal signal patterns.

4.4.1 Individual Impacts

The introduction of Gaussian noise as a form of data aug-
mentation appears to decrease the performance of all mod-
els. This reduction in accuracy might be attributed to the
fact that EEG data already contains a certain level of natu-
ral noise. The addition of artificial noise could be obscur-
ing genuine EEG signal patterns that the models rely on for
making accurate predictions.

The channel drop technique demonstrates a more pro-
nounced negative impact on model accuracy compared to
Gaussian noise. Channel drop simulates the loss of infor-
mation by randomly omitting some channels of EEG data
during training. This method may degrade performance sig-
nificantly because it could be removing critical features that
are necessary for the model to make accurate inferences.

4.4.2 Combination of Augmentation Techniques

Interestingly, using both Gaussian noise and channel drop
together results in less of a performance decrease compared
to using each method individually. This could indicate that
the combination of both techniques forces the models to
learn more robust features that are less reliant on any sin-
gle channel or less sensitive to noise, leading to a slight
improvement in performance when both types of noise are
present.

References
[1] Vernon J Lawhern, Amelia J Solon, Nicholas R Waytowich,

Stephen M Gordon, Chou P Hung, and Brent J Lance. Eeg-
net: a compact convolutional neural network for eeg-based
brain–computer interfaces. Journal of Neural Engineering,
15(5):056013, July 2018. 1



Appendix:
Optimizer

For all models, Adam optimizer is used with a step learn-
ing rate scheduler.

Data Augmentations

Two data augmentation techniques are used: Gaussian
and channel drop. Gaussian adds a random Gaussian noise
tensor scaled by 0.01 to the original data to increase robust-
ness of the model towards variation of the input data. Chan-
nel drop randomly zeros out an input channel to prevent the
model to be over-reliance on any single channel.

MiniResNet

MiniResNet starts with a conv layer (32-filters of 1x10),
followed by batchnorm, ReLU, and a max pooling (1x10
kernel). The architecture progresses through four down-
sampling residual blocks doubling the number of channels
at each block from 32 to 512. Each residual block includes
an initial convolution (1x3 kernel, 1x2 stride, 0x1 padding),
batchnorm, and ReLU, followed by a second convolution
(1x3 kernel, 1x1 stride, 0x1 padding) and batchnorm. The
input’s residual, processed with the third convolution (1x1
kernel, 1x2 stride, 0 padding) and batchnorm, is added to
the second layer’s output, leading to a final ReLU. The ar-
chitecture concludes with a 1x1 adaptive average pooling,
and a linear layer reducing dimensions to 4.

EEGNet

This model, inspired by EEGNet, is tailored for EEG sig-
nal processing with a CNN architecture. It initiates with
a conv layer (32 filters of 1x51, 0x25 padding), followed
by batchnorm, ELU, and average pooling (1x5 kernel, 1x5
stride). The sequence continues with a depthwise convolu-
tional layer (32 8x1 filters with no padding), batchnorm,
ELU, and the same average pooling. Next, the separa-
ble convolutional Layer (64 filters of 1x15 filters and 0x7
padding) expands to 64 channels, followed by batchnorm,
ELU, and the same average pooling. Then, the signal is fil-
tered with a 0.6 dropout layer, and compressed via three lin-
ear layers with ELU activation, reducing dimensions from
3840 to 1024, then to 512. The process ends with a fourth
linear layer that further reduces the features to a size of 4.

RNNModel

This model adopts a classic RNN framework with five
RNN layers (input size 22, hidden size 256), utilizing tanh
activation. To mitigate overfitting, a 0.6 dropout layer is ap-
plied after each RNN layer, excluding the final one. Follow-
ing the RNN layers, a linear layer reduces RNN output to
128 dimensions, followed by a ReLU activation, then com-
presses to a 4-dimensional output with a final linear layer.

HybridCNNLSTMModel

This model fuses a CNN architecture with LSTM units,
starting with four convolutional blocks. Each block in-
cludes a conv layer (5x5 filter, 2 padding). The first
block has a max pooling layer (3x1 kernel and stride, 1x0
padding), while the rest has average pooling (2x1 kernel and
stride, no padding). All blocks have a batchnorm layer and
a 0.6 dropout layer. The convolutional layers increase out-
put channels from 25 to 50, to 100, then 200. After these
blocks, the input is flattened and processed by a linear layer
reducing dimensions to 40, coupled with an ELU activation.
The architecture ends with LSTM, featuring 40 hidden units
across 5 layers and a 0.6 dropout rate, then compacts the di-
mensions to 4 with a linear layer.

EEGLSTMNet

This model merges EEGNet with LSTM units to pro-
cess temporal dependencies. Initially, input passes through
a series EEGNet convolution blocks, then followed by a
dropout layer, ELU, and a linear layer. Diverging from
solely linear layers used in EEGNet, this model utilized
LSTM, incorporating 512 units spread across 5 layers to
effectively capture temporal dynamics. A 0.6 dropout is
applied to mitigate overfitting, and finally compresses the
output to a final 4-dimensional output with a linear layer.

EEGAttentionNet & EEGMultiAttentionNet

EEGAttentionNet integrates an attention mechanism to
prioritize critical EEG signal features. Following the EEG-
Net blocks sequence, the output is flattened to 960 di-
mensions and divided into keys, queries, and values via
three linear layers, each reducing dimensions to 512. Self-
attention is performed and the output (4608 dimensions)
is then condensed through three linear layers, sequentially
narrowing dimensions from 4608 to 512, maintaining at
512, and finally to 4. ELU and a 0.6 dropout are applied
after the first two linear layers for effective signal analysis.

Building on the EEGAttentionNet model, EEGMultiAt-
tentionNet replaces the orignal self-attention with a multi-
head attention mechanism of 8 heads and an embedding size
of 512 for parallel processing of EEG signals.

HybridCNNTransformerModel

This model maintains the initial structure of the Hybrid-
CNNLSTMModel’s four convolutional blocks and subse-
quent linear layer with ELU activation, but replacing LSTM
units with a Transformer architecture. The Transformer
comprises 4 attention heads with an embedding size of
40 for both input and output vectors, and 6 encoder and
decoder layers (80-dimensional feedforward netowrk, 0.6
dropout rate, GELU activation). The output is then con-
densed to 4 dimensions through a final linear layer.



Model Epochs Batch Size Step Size Gamma Val Accuracy Test Accuracy

MiniResNet 30 128 30 0.3 0.2583 0.2506
RNN 40 128 10 0.3 0.2607 0.2257
General CNN + RNN 60 64 30 0.3 0.4645 0.4266
General CNN + Transformer 60 128 20 0.5 0.2607 0.2370
EEGNet 60 16 10 0.3 0.6967 0.7133
EEGNet + RNN 60 128 20 0.3 0.6730 0.6433
EEGNet + Attention 90 64 30 0.5 0.6232 0.6117
EEGNet + Multi-head Attention 90 128 30 0.5 0.6540 0.6072

Table 1. Accuracy Overview on All Subjects

Figure 1. Accuracy comparison on each subject (Exp 2).

Figure 2. Time Bin Accuracy (Exp 3). Figure 3. Data Augmentation Accuracy (Exp 4).


	C147_Project_Writeup
	. Introduction
	. Data Preprocessing
	. Results
	. Experiment 1: Train on All, Test on All
	. Experiment 2: Train on Each, Test on Each
	. Experiment 3: Accuracy VS Time Bins
	. Experiment 4: Effect of Data Augmentation

	. Discussion
	. Accuracy Across All Subjects in Experiment 1
	Domain Specific Architecture
	Overfitting Resistance

	. Accuracy Among Subjects in Experiment 2
	Poor Performance on Specific Subjects
	Cross-Subject Generalization

	. Accuracy Across Time Bins in Experiment 3
	Poor Performance on Short and Long Time Bins
	Optimal Time bins

	. Data Augmentation Accuracy in Experiment 4
	Individual Impacts
	Combination of Augmentation Techniques



	appendix_figure
	appendix_figure

